地铁盾构管片,盾构机混凝土预制件管片

牵着乌龟去散步 地铁 5

大家好,今天给各位分享地铁盾构管片的一些知识,其中也会对盾构机混凝土预制件管片进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!

本文目录

  1. 地铁盾构管片有什么规格
  2. 地铁盾构施工管片宽度、厚度一般为多少
  3. 地铁盾构隧道管片配筋型式探讨

一、地铁盾构管片有什么规格

直径:6M,宽度:1.5M,厚度:0.3M,也有用于半径较小的特殊转弯管片,宽度为1.2M,其它数据相同。

盾构施工顺掘进方向,盾构切口前 30 m以内和后50 m以内地表沉降值变化较大。其中,盾构切口后50 m地表沉降值变化显著。

盾构施工垂直掘进方向,地表呈槽型沉降,沉降更大点位于盾构中心上方,距盾构中心轴线越远沉降越小,离盾构中心轴线18 m(3倍盾构直径)以外区域地表沉降值较小,考虑到观测误差,可认为不受盾构掘进影响。

施工过程中正确地设定盾构正面平衡土压,平衡压力设定值应略低于理论值,推进速度不宜过快,盾构机在加固区推进时,为改善刀盘受力情况,需要通过设置在刀盘上的加泥孔,向前方土体加膨润土或者水进行土体改良。

待盾构出加固区时,为防止由于正面土质变化而造成盾构姿态突变,必须按工况条件及时调整平衡压力的值。施工过程中根据地层变形量等信息反馈对平衡压力设定值、推进速度、出土量等施工参数作及时调整。

二、地铁盾构施工管片宽度、厚度一般为多少

1、一般根据盾构机的尺寸有关。设计时候会考虑抗压、抗切、抗渗等,来定相应的管片。

2、地铁隧道管片一般为例:钢筋砼管片厚度300mm,内径Φ5400mm,环宽1500mm,盾构机Φ6260mm左右的。

3、也有用于半径较小的特殊转弯管片:环宽1200mm,盾构机Φ8800mm、Φ15000mm、Φ4300mm、Φ12000mm,各种盾构机的管片肯定不同。

4、盾构管片是是隧道的最内层屏障,是盾构法隧道的永久衬砌结构,盾构管片质量直接关系到隧道的整体质量和安全,影响隧道的防水 *** 能及耐久 *** 能。

5、盾构继续掘进后,在盾构千斤顶推力、脱出盾尾后土(水)压力的作用下衬砌产生变形,拼装时紧固的连接螺栓会松弛。为此,待推进到千斤顶推力影响不到的位置后,用扭矩扳手等,再一次紧固连接螺栓。再紧固的位置随隧道外径、隧道线形、管片种类、地质条件等而不同。

6、参考资料来源:百度百科-盾构管片

三、地铁盾构隧道管片配筋型式探讨

下面是中达咨询给大家带来关于地铁盾构隧道管片配筋型式的相关内容,以供参考。

目前国内地铁盾构隧道通常采用单层钢筋混凝土管片作为永久结构,由于盾构隧道绝大部分在繁华市区的建筑物、交通干道之下,沿途还穿越各种管线,钢筋混凝土管片的质量不但直接决定盾构隧道的使用寿命,而且将影响隧道上部建构筑物的正常使用。本文以广州地铁为工程背景.通过理论分析及对目前所采用的配筋型式进行研究,结合实际使用效果,对盾构管片的合理配筋型式进行探讨,希望能对提高盾构隧道管片的质量有所参考。

我国在城市地下铁道的建设中,盾构施工法以其良好的防水 *** 能、施工安全陕速、对周围环境的影响极小等优点,在地下铁道的建设中已成为重要的可选施工 *** 之一,在许多场合已成为首选 *** 。尤其是随着国内外盾构设备技术水平的提高、盾构设备在工程成本中所占比重的下降,盾构施工法的工程造价已接近甚至低于矿山法暗挖施工和明挖法施工。在广州地铁已建和在建区间隧道中已经采用了较大数量的盾构法施工隧道,并已在诸多方面显示出其优越 *** 。在广州地铁三号线中盾构法已成为最主要的区间隧道施工 *** ,在长约31km的区间隧道中有约21km采用盾构法施工。

广州地铁三号线所采用的管片型式是当前常用的平板型钢筋混凝土管片。每环管片由6块组成,3块标准块,2块邻接块,1块封顶块,管片厚度为0.3m,外径为6.0m,内径为5.4m,每吓宽度1.5m,

钢筋 *** (含加工费)按4000元/t计算,则管片含钢量每提高1kg/m,盾构区间工程费用将会增加约90万,日前国内已完工的盾构隧道管片含钢量为128-165kg/m不等,相差37ks/m3,采用不同的含钢呈,将会使三号线盾构区间工程投资有3339万的差别。因此对管片合理配筋型式的研究具有很强的实际意义。

管片配筋通常以管片的结构分析为基础,结合实际使用 *** 现的问题以配置相应的构造钢筋。设计时.除考虑结构在正常使用时的各种荷载组合工矿外,还应充分考虑管片在包括制造、运输、拼装过程中的各种因素的影响。

在我国使用较多的设计理论主要以日本的规范为借鉴,其重点放在结构施工完毕后的永久荷载作用下的工况,对工况采取限定最小计算荷载进行考虑,但对其实际内力分布分析得不够透彻。由于接头的存在,对衬砌内力分布会造成一定的影响。衬砌环的计算对接头的处理有两种 *** :之一种是将衬砌环看做 *** 均匀的结构,但考虑到接头的存在,将结构的 *** 进行折减;第二种是将接头看做可以承受轴力和一定弯矩的弹 *** 铰。

在一衬砌圆环内,具体考虑环向接头的位置和接头的 *** ,用曲梁单元模拟管片的实际状况,用接头抗弯 *** 来体现环向接头的实际抗弯 *** 。错缝式拼装时,因纵向接头将引起衬砌圆环间的相互咬合作用,此时根据错缝拼装方式,除考虑计算对象的衬砌圆环外,将对其有影响的前后的衬砌圆环也作为对象,采用空间结构进行计算,并用圆环径向抗剪 *** Kr和切向抗剪 *** Kt来体现纵向接头的环间传力效果(见图1).

采用之一种模型计算简单,且基本上能反映管片环内力最不利情况,一般初步确定设计参数时采用。在施工图设计采用第二种 *** ,同时考虑错缝拼装的影响进行精确计算(见图2).典型的弯矩、轴力图见图3、4。

千斤顶推力是作为盾构推进时盾构千斤顶推力的反作用力在衬砌构件上的临时荷载,是在施工荷载中给予衬砌影响更大的荷载。理论上,千斤顶的推力可以顺利地传送给后面的衬砌环,常常对此项荷载对管片的影响忽略不计。尽管为了缓冲管片传来的力,在管片背千斤顶面,对应千斤顶的位置,设置了橡胶传力垫,由于管片与传力垫间间隙的存在,即使仅仅是0.5MM或1.0MM,也会使得在千斤顶作用下管片的内力分布及大小出现根大的变化。在一定条件下,考虑管片 *** 误差的施工状态会成为决定管片厚度及配筋的控制因素。因此在管片配筋设计时必须充分考虑施工状态时管片的力学行为。提高管片宽度方向的 *** 精度,减少拼装后环缝面的间隙,可以减少施工状态时管片所需的配筋,当施工状态和使用状态所需的配筋相似时是比较合理的。

欧洲的管片其含钢量一般处于80-100kg/m,考虑钢筋强度等因素,折算含钢量约为107~130kg/m.另外,目前已有不少的钢纤维混凝土管片成功应用的经验,其管片仅采用30—60kg/m3的钢纤维掺量,来代替普通的钢筋混凝土管片。相对国内目前通常采用的145-160kg/m含钢量,管片的合理含钢量应做进一步的研究。

计算表明,管片在软弱围岩下,其正常使用状态下承受的顶部荷载较大,侧限也较小力较大,对圆形结构的承载能力影响不大。而在硬岩中,侧压力较小,但其顶部荷载较小,对圆形结构的承载能力影响也不大。

根据作者收集的资料,目前盾构管片的裂缝主要是在施工过程中产生的,特别是管片拼装完毕,开始下一环掘进时。当管片离开盾尾后,由新拼装完毕的管片来传递盾构千斤顶的顶推力时,由于千斤顶的力得到了分散,其裂缝会变小。其主要原因是由于管片环面不平、千斤顶推力分布很不均匀(在围岩不均匀、纠偏及曲线施工时容易出现),导致管片出现了局部超限的拉应力。随着隧道的修建完毕,圆形的盾构隧道逐步转入比较稳定的受力状态,施工期出现的裂缝大部分都变小。

在设计中,对在永久荷载、可变荷载及偶然荷载作用下管片的强度和裂缝宽度进行验算,但在实际施工中,由于条件所限或人为因素、有时也会出现超出强度和裂缝宽度要求的荷载,但是施工中偶尔出现的问题,通过后期修补解决其费用相对所有管片均增加配筋所需的费用要小的多。

参考国内外做法,同时结合施工经验,管片配筋设计,建议取消u型钢筋连接上下排主筋的做法,在管片四边沿环及纵向布置暗梁,使其整体 *** 加强,同时在迎千斤顶面的暗梁内外两侧设置腰筋,背千斤顶面的外侧设置腰筋;在容易出现裂缝的环向螺栓孔处设置吊筋及螺旋筋。优化钢筋的布置型式后,在每立方米含钢量不变的情况下,使钢筋的受力更加合理;更有效地承担施工过程中千斤顶荷载,对解决施工期出现裂缝的问题会有较大的改善。

针对目前存在的管片配筋问题,作者认为应注意以下问题:

地铁盾构管片,盾构机混凝土预制件管片-第1张图片-

应针对不同地质情况,深入研究管片的受力机理(包括施工状态和正常使用状态),选择合理的计算模式。使钢筋的含量及布置更合理。

合理分析风险和投资,找到适当的平衡点,避免为节约前期投资,使得后期处理费用过大,也不应为了避免施工中偶尔出现的开裂、蹦角等现象,不合理的加大管片配筋。

更多关于工程/服务/采购类的标书 *** *** ,提升中标率,您可以点击底部官网 *** 免费咨询:

关于地铁盾构管片到此分享完毕,希望能帮助到您。

标签: 管片 盾构 预制件 混凝土 地铁

抱歉,评论功能暂时关闭!